## Kuratowski limits of subsets of real line and their applications to pretangent spaces

## Viktoriia Bilet

(Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Sloviansk) E-mail: viktoriiabilet@gmail.com

## Oleksiy Dovgoshey

(Institute of Applied Mathematics and Mechanics of the NASU of Ukraine, Sloviansk)

E-mail: oleksiy.dovgoshey@gmail.con

Let (X,d) be an unbounded metric space and  $\tilde{r} = (r_n)_{n \in \mathbb{N}}$  be a scaling sequence of positive real numbers tending to infinity. We define the pretangent and tangent spaces  $\Omega^X_{\infty,\tilde{r}}$  to (X,d) at infinity as metric spaces whose points are equivalence classes of sequences  $(x_n)_{n \in \mathbb{N}} \subset X$  which tend to infinity with the speed of  $\tilde{r}$ . The detailed description of constructions of these spaces and their basic properties see, e. g., in [2].

Let  $(Y, \delta)$  be a metric space. For any sequence  $(A_n)_{n \in \mathbb{N}}$  of nonempty sets  $A_n \subseteq Y$ , the Kuratowski limit inferior of  $(A_n)_{n \in \mathbb{N}}$  is the subset  $\underset{n \to \infty}{Li} A_n$  of Y defined by the rule:

$$\left(y \in \underset{n \to \infty}{Li} A_n\right) \Leftrightarrow \left(\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \colon B(y, \varepsilon) \cap A_n \ne \varnothing\right),$$

where  $B(y,\varepsilon)$  is the open ball of radius  $\varepsilon > 0$  centered at the point  $y \in Y$ ,

$$B(y,\varepsilon) = \{x \in Y : \delta(x,y) < \varepsilon\}.$$

Similarly, the Kuratowski limit superior of  $(A_n)_{n\in\mathbb{N}}$  can be defined as the subset  $\underset{n\to\infty}{Ls} A_n$  of Y for which

$$\left(y \in \underset{n \to \infty}{Ls} A_n\right) \Leftrightarrow \left(\forall \varepsilon > 0 \ \forall n \in \mathbb{N} \ \exists n_0 \ge n : B(y, \varepsilon) \cap A_{n_0} \ne \varnothing\right).$$

The Kuratowski limit inferior and limit superior are basic concepts of set-valued analysis in metric spaces and have numerous applications (see, for example, [1]).

We denote  $tA := \{tx : x \in A\}$  for any nonempty set  $A \subseteq \mathbb{R}$  and  $t \in \mathbb{R}$ , and,  $\nu_0 := \tilde{X}_{\infty,\tilde{r}}^0 \in \Omega_{\infty,\tilde{r}}^X$  for any pretangent space  $\Omega_{\infty,\tilde{r}}^X$  of an unbounded metric space (X,d). Moreover, for every scaling sequence  $\tilde{r}$ , we denote by  $\Omega_{\infty,\tilde{r}}^X$  the set of all pretangent at infinity spaces to (X,d) with respect to  $\tilde{r}$ . Write

$$Sp\left(\Omega^X_{\infty,\tilde{r}}\right):=\{\rho(\nu_0,\nu)\colon \nu\in\Omega^X_{\infty,\tilde{r}}\} \text{ and } Sp(X):=\{d(p,x)\colon x\in X\}.$$

**Твердження 1.** Let (X,d) be an unbounded metric space,  $p \in X$ ,  $\tilde{r} = (r_n)_{n \in \mathbb{N}}$  be a scaling sequence and let  $\tilde{\mathbf{R}}$  be the set of all infinite subsequences of  $\tilde{r}$ . Then the equalities

$$\bigcup_{\Omega_{\infty,\tilde{r}}^{X} \in \Omega_{\infty,\tilde{\mathbf{r}}}^{\mathbf{X}}} Sp\left(\Omega_{\infty,\tilde{r}}^{X}\right) = \underset{n \to \infty}{Li} \left(\frac{1}{r_{n}} Sp(X)\right),$$

$$\bigcup_{\substack{\Omega^X_{\infty,\tilde{r}'}\in\mathbf{\Omega}^X_{\infty,\tilde{r}'},\,\tilde{r}'\in\tilde{\mathbf{R}}}}Sp(\Omega^X_{\infty,\tilde{r}'})=\underset{n\to\infty}{Ls}\left(\frac{1}{r_n}Sp(X)\right)$$

hold.

**Наслідок 2.** Let (X,d) be an unbounded metric space,  $\tilde{r}$  be a scaling sequence and let  ${}^1\Omega^X_{\infty,\tilde{r}}$  be tangent and separable. Then we have

$$\mathop{Li}_{n\to\infty}\left(\frac{1}{r_n}Sp(X)\right) = \mathop{Ls}_{n\to\infty}\left(\frac{1}{r_n}Sp(X)\right) = Sp\left({}^1\Omega^X_{\infty,\tilde{r}}\right).$$

**Наслідок 3.** Let (X,d) be an unbounded metric space,  $\tilde{r}$  be a scaling sequence. Then the sets

$$\bigcup_{\Omega^X_{\infty,\tilde{r}}\in \mathbf{\Omega}^{\mathbf{X}}_{\infty,\tilde{\mathbf{r}}}} Sp(\Omega^X_{\infty,\tilde{r}}) \quad and \quad \bigcup_{\Omega^X_{\infty,\tilde{r}'}\in \mathbf{\Omega}^{\mathbf{X}}_{\infty,\tilde{\mathbf{r}}'},\tilde{r}'\in \tilde{\mathbf{R}}} Sp(\Omega^X_{\infty,\tilde{r}'})$$

are closed subsets of  $[0, \infty)$ .

Recall that a metric space  $(Y, \delta)$  is said to be *strongly rigid* if for all  $x, y, z, w \in Y$  the conditions  $\delta(x, y) = \delta(w, z)$  and  $x \neq y$  imply that  $\{x, y\} = \{z, w\}$ . Let us consider a strongly rigid metric space  $(Y, \delta)$  such that:

- $(i_1) \ \delta(x,y) < 2 \text{ for all points } x, y \in Y; (i_2) \sup \{\delta(x,y) : x, y \in Y\} = 2;$
- (i<sub>3</sub>) The cardinality of the open ball  $B(y^*, r) = \{y \in Y : \delta(y, y^*) < r\}$  is finite for every  $r \in (0, 2)$  and every  $y^* \in Y$ .

**Наслідок 4.** Let (X,d) be an unbounded metric space,  $\tilde{r}$  be a scaling sequence,  $\Omega^X_{\infty,\tilde{r}}$  be tangent and let  $(Y,\delta)$  be a strongly rigid metric space satisfying conditions  $(i_1)$ - $(i_3)$ . If  $Y_1 \subseteq Y$  and  $f: \Omega^X_{\infty,\tilde{r}} \to Y_1$  is an isometry, then  $\Omega^X_{\infty,\tilde{r}}$  is finite.

Приклад 5. Let  $(Y, \delta)$  be a metric space with  $Y = \mathbb{N}$  and the metric  $\delta$  defined such that:

$$\begin{split} \delta(1,2) &= 1 + \frac{1}{2}; \\ \delta(1,3) &= 1 + \frac{2}{3}, \quad \delta(2,3) = 1 + \frac{3}{4}; \\ \delta(1,4) &= 1 + \frac{4}{5}, \quad \delta(2,4) = 1 + \frac{5}{6}, \quad \delta(3,4) = 1 + \frac{6}{7}; \\ \delta(1,5) &= 1 + \frac{7}{8}, \quad \delta(2,5) = 1 + \frac{8}{9}, \quad \delta(3,5) = 1 + \frac{9}{10}, \quad \delta(4,5) = 1 + \frac{10}{11}; \end{split}$$

Then  $(Y, \delta)$  is a countable, complete and strongly rigid metric space satisfying conditions  $(i_1)$ - $(i_3)$ . By Corollary 4 no tangent space  $\Omega^X_{\infty,\tilde{r}}$  is isometric to  $(Y, \delta)$ .

**Наслідок 6.** Let (X,d) be an unbounded metric space and let  $\tilde{r}$  be a scaling sequence. Then the following statements are equivalent:

- (i) There is a single-point pretangent space  $\Omega^{X}_{\infty,\tilde{r}}$ ;
- (ii) All  $\Omega_{\infty,\tilde{r}}^X$  are single-point;
- (iii) The equality

$$\mathop{Li}_{n\to\infty}\left(\frac{1}{r_n}Sp(X)\right) = \{0\}$$

holds.

## ЛІТЕРАТУРА

- [1] J.-P. Aubin, H. Frankowska. Set-valued Analysis, Birkhäuser, Boston, Basel, Berlin: 1990.
- [2] Viktoriia Bilet, Oleksiy Dovgoshey. Finite asymptotic clusters of metric spaces. *Theory and Applications of Graphs*, 5(2): 1–33, 2018.